The Gerrit server functionality can be extended by installing plugins. This page describes how plugins for Gerrit can be developed.
For PolyGerrit-specific plugin development, consult with PolyGerrit Plugin Development guide.
Depending on how tightly the extension code is coupled with the Gerrit
server code, there is a distinction between plugins
and extensions
.
A plugin
in Gerrit is tightly coupled code that runs in the same JVM
as Gerrit. It has full access to all server internals. Plugins are
tightly coupled to a specific major.minor server version and may require
source code changes to compile against a different server version.
Plugins may require a specific major.minor.patch server version and may need rebuild and revalidation across different patch levels. A different patch level may only add new API interfaces and never change or extend existing ones.
An extension
in Gerrit runs inside of the same JVM as Gerrit in the
same way as a plugin, but has limited visibility to the server’s
internals. The limited visibility reduces the extension’s dependencies,
enabling it to be compatible across a wider range of server versions.
Most of this documentation refers to either type as a plugin.
Getting started
To get started with the development of a plugin clone the sample plugin:
$ git clone https://gerrit.googlesource.com/plugins/cookbook-plugin
This is a project that demonstrates the various features of the plugin API. It can be taken as an example to develop an own plugin.
When starting from this example one should take care to adapt the
Gerrit-ApiVersion
in the BUILD
to the version of Gerrit for which
the plugin is developed.
API
There are two different API formats offered against which plugins can be developed:
-
gerrit-extension-api.jar
A stable but thin interface. Suitable for extensions that need to be notified of events, but do not require tight coupling to the internals of Gerrit. Extensions built against this API can expect to be binary compatible across a wide range of server versions. -
gerrit-plugin-api.jar
The complete internals of the Gerrit server, permitting a plugin to tightly couple itself and provide additional functionality that is not possible as an extension. Plugins built against this API are expected to break at the source code level between every major.minor Gerrit release. A plugin that compiles against 2.5 will probably need source code level changes to work with 2.6, 2.7, and so on.
Manifest
Plugins may provide optional description information with standard manifest fields:
Implementation-Title: Example plugin showing examples
Implementation-Version: 1.0
Implementation-Vendor: Example, Inc.
ApiType
Plugins using the tightly coupled gerrit-plugin-api.jar
must declare
this API dependency in the manifest to gain access to server internals.
If no Gerrit-ApiType
is specified the stable extension
API will be
assumed. This may cause ClassNotFoundExceptions when loading a plugin
that needs the plugin API.
Gerrit-ApiType: plugin
Explicit Registration
Plugins that use explicit Guice registration must name the Guice modules
in the manifest. Up to three modules can be named in the manifest.
Gerrit-Module
supplies bindings to the core server; Gerrit-SshModule
supplies SSH commands to the SSH server (if enabled);
Gerrit-HttpModule
supplies servlets and filters to the HTTP server (if
enabled). If no modules are named automatic registration will be
performed by scanning all classes in the plugin JAR for @Listen
and
@Export("")
annotations.
Gerrit-Module: tld.example.project.CoreModuleClassName
Gerrit-SshModule: tld.example.project.SshModuleClassName
Gerrit-HttpModule: tld.example.project.HttpModuleClassName
Plugin Name
A plugin can optionally provide its own plugin name.
Gerrit-PluginName: replication
This is useful for plugins that contribute plugin-owned capabilities
that are stored in the project.config
file. Another use case is to be
able to put project specific plugin configuration section in
project.config
. In this case it is advantageous to reserve the plugin
name to access the configuration section in the project.config
file.
If Gerrit-PluginName
is omitted, then the plugin’s name is determined
from the plugin file name.
If a plugin provides its own name, then that plugin cannot be deployed multiple times under different file names on one Gerrit site.
For Maven driven plugins, the following line must be included in the pom.xml file:
<manifestEntries>
<Gerrit-PluginName>name</Gerrit-PluginName>
</manifestEntries>
For Bazel driven plugins, the following line must be included in the BUILD configuration file:
manifest_entries = [
'Gerrit-PluginName: name',
]
A plugin can get its own name injected at runtime:
public class MyClass {
private final String pluginName;
@Inject
public MyClass(@PluginName String pluginName) {
this.pluginName = pluginName;
}
[...]
}
A plugin can get its canonical web URL injected at runtime:
public class MyClass {
private final String url;
@Inject
public MyClass(@PluginCanonicalWebUrl String url) {
this.url = url;
}
[...]
}
The URL is composed of the server’s canonical web URL and the plugin’s
name, i.e. http://review.example.com:8080/plugin-name
.
The canonical web URL may be injected into any .jar plugin regardless of whether or not the plugin provides an HTTP servlet.
Reload Method
If a plugin holds an exclusive resource that must be released before
loading the plugin again (for example listening on a network port or
acquiring a file lock) the manifest must declare Gerrit-ReloadMode
to
be restart
. Otherwise the preferred method of reload
will be used,
as it enables the server to hot-patch an updated plugin with no down
time.
Gerrit-ReloadMode: restart
In either mode (restart or reload) any plugin or extension can be updated without restarting the Gerrit server. The difference is how Gerrit handles the upgrade:
-
restart
The old plugin is completely stopped. All registrations of SSH commands and HTTP servlets are removed. All registrations of any extension points are removed. All registered LifecycleListeners have theirstop()
method invoked in reverse order. The new plugin is started, and registrations are made from the new plugin. There is a brief window where neither the old nor the new plugin is connected to the server. This means SSH commands and HTTP servlets will return not found errors, and the plugin will not be notified of events that occurred during the restart. -
reload
The new plugin is started. Its LifecycleListeners are permitted to perform theirstart()
methods. All SSH and HTTP registrations are atomically swapped out from the old plugin to the new plugin, ensuring the server never returns a not found error. All extension point listeners are atomically swapped out from the old plugin to the new plugin, ensuring no events are missed (however some events may still route to the old plugin if the swap wasn’t complete yet). The old plugin is stopped.
To reload/restart a plugin the plugin reload command can be used.
Init step
Plugins can contribute their own “init step” during the Gerrit init wizard. This is useful for guiding the Gerrit administrator through the settings needed by the plugin to work properly.
For instance plugins to integrate Jira issues to Gerrit changes may contribute their own “init step” to allow configuring the Jira URL, credentials and possibly verify connectivity to validate them.
Gerrit-InitStep: tld.example.project.MyInitStep
MyInitStep needs to follow the standard Gerrit InitStep syntax and behavior: writing to the console using the injected ConsoleUI and accessing / changing configuration settings using Section.Factory.
In addition to the standard Gerrit init injections, plugins receive the @PluginName String injection containing their own plugin name.
During their initialization plugins may get access to the
project.config
file of the All-Projects
project and they are able to
store configuration parameters in it. For this a plugin InitStep
can
get com.google.gerrit.pgm.init.api.AllProjectsConfig
injected:
public class MyInitStep implements InitStep {
private final String pluginName;
private final ConsoleUI ui;
private final AllProjectsConfig allProjectsConfig;
@Inject
public MyInitStep(@PluginName String pluginName, ConsoleUI ui,
AllProjectsConfig allProjectsConfig) {
this.pluginName = pluginName;
this.ui = ui;
this.allProjectsConfig = allProjectsConfig;
}
@Override
public void run() throws Exception {
}
@Override
public void postRun() throws Exception {
ui.message("\n");
ui.header(pluginName + " Integration");
boolean enabled = ui.yesno(true, "By default enabled for all projects");
Config cfg = allProjectsConfig.load().getConfig();
if (enabled) {
cfg.setBoolean("plugin", pluginName, "enabled", enabled);
} else {
cfg.unset("plugin", pluginName, "enabled");
}
allProjectsConfig.save(pluginName, "Initialize " + pluginName + " Integration");
}
}
Bear in mind that the Plugin’s InitStep class will be loaded but the standard Gerrit runtime environment is not available and the plugin’s own Guice modules were not initialized. This means the InitStep for a plugin is not executed in the same way that the plugin executes within the server, and may mean a plugin author cannot trivially reuse runtime code during init.
For instance a plugin that wants to verify connectivity may need to statically call the constructor of their connection class, passing in values obtained from the Section.Factory rather than from an injected Config object.
Plugins’ InitSteps are executed during the “Gerrit Plugin init” phase,
after the extraction of the plugins embedded in the distribution .war
file into $GERRIT_SITE/plugins
and before the DB Schema initialization
or upgrade.
A plugin’s InitStep cannot refer to Gerrit’s DB Schema or any other Gerrit runtime objects injected at startup.
public class MyInitStep implements InitStep {
private final ConsoleUI ui;
private final Section.Factory sections;
private final String pluginName;
@Inject
public GitBlitInitStep(final ConsoleUI ui, Section.Factory sections, @PluginName String pluginName) {
this.ui = ui;
this.sections = sections;
this.pluginName = pluginName;
}
@Override
public void run() throws Exception {
ui.header("\nMy plugin");
Section mySection = getSection("myplugin", null);
mySection.string("Link name", "linkname", "MyLink");
}
@Override
public void postRun() throws Exception {
}
}
Classpath
Each plugin is loaded into its own ClassLoader, isolating plugins from
each other. A plugin or extension inherits the Java runtime and the
Gerrit API chosen by Gerrit-ApiType
(extension or plugin) from the
hosting server.
Plugins are loaded from a single JAR file. If a plugin needs additional libraries, it must include those dependencies within its own JAR. Plugins built using Maven may be able to use the shade plugin to package additional dependencies. Relocating (or renaming) classes should not be necessary due to the ClassLoader isolation.
Listening to Events
Certain operations in Gerrit trigger events. Plugins may receive notifications of these events by implementing the corresponding listeners.
-
com.google.gerrit.common.EventListener
:Allows to listen to events without user visibility restrictions. These are the same events that are also streamed by the gerrit stream-events command.
-
com.google.gerrit.common.UserScopedEventListener
:Allows to listen to events visible to the specified user. These are the same events that are also streamed by the gerrit stream-events command.
-
com.google.gerrit.extensions.events.LifecycleListener
:Plugin start and stop
-
com.google.gerrit.extensions.events.NewProjectCreatedListener
:Project creation
-
com.google.gerrit.extensions.events.ProjectDeletedListener
:Project deletion
-
com.google.gerrit.extensions.events.HeadUpdatedListener
:Update of HEAD on a project
-
com.google.gerrit.extensions.events.UsageDataPublishedListener
:Publication of usage data
-
com.google.gerrit.extensions.events.GarbageCollectorListener
:Garbage collection ran on a project
-
com.google.gerrit.server.extensions.events.ChangeIndexedListener
:Update of the change secondary index
-
com.google.gerrit.server.extensions.events.AccountIndexedListener
:Update of the account secondary index
-
com.google.gerrit.server.extensions.events.GroupIndexedListener
:Update of the group secondary index
-
com.google.gerrit.server.extensions.events.ProjectIndexedListener
:Update of the project secondary index
-
com.google.gerrit.httpd.WebLoginListener
:User login or logout interactively on the Web user interface.
The event listener is under the Gerrit http package to automatically inherit the javax.servlet.http dependencies and allowing to influence the login or logout flow with additional redirections.
Sending Events to the Events Stream
Plugins may send events to the events stream where consumers of Gerrit’s
stream-events
ssh command will receive them.
To send an event, the plugin must invoke one of the postEvent
methods
in the EventDispatcher
interface, passing an instance of its own
custom event class derived from com.google.gerrit.server.events.Event
.
import com.google.gerrit.common.EventDispatcher;
import com.google.gerrit.extensions.registration.DynamicItem;
import com.google.gwtorm.server.OrmException;
import com.google.inject.Inject;
class MyPlugin {
private final DynamicItem<EventDispatcher> eventDispatcher;
@Inject
myPlugin(DynamicItem<EventDispatcher> eventDispatcher) {
this.eventDispatcher = eventDispatcher;
}
private void postEvent(MyPluginEvent event) {
try {
eventDispatcher.get().postEvent(event);
} catch (OrmException e) {
// error handling
}
}
}
Plugins which define new Events should register them via the
com.google.gerrit.server.events.EventTypes.registerClass()
method.
This will make the EventType known to the system. Deserializing events
with the com.google.gerrit.server.events.EventDeserializer
class
requires that the event be registered in EventTypes.
Modifying the Stream Event Flow
It is possible to modify the stream event flow from plugins by
registering an com.google.gerrit.server.events.EventDispatcher
. A
plugin may register a Dispatcher class to replace the internal
Dispatcher. EventDispatcher is a DynamicItem, so Gerrit may only have
one copy.
Validation Listeners
Certain operations in Gerrit can be validated by plugins by implementing the corresponding listeners.
Change Message Modifier
com.google.gerrit.server.git.ChangeMessageModifier
: plugins
implementing this can modify commit message of the change being
submitted by Rebase Always and Cherry Pick submit strategies as well as
change being queried with COMMIT_FOOTERS option.
Merge Super Set Computation
The algorithm to compute the merge super set to detect changes that
should be submitted together can be customized by implementing
com.google.gerrit.server.git.MergeSuperSetComputation
.
MergeSuperSetComputation is a DynamicItem, so Gerrit may only have one
implementation.
Receive Pack Initializers
Plugins may provide ReceivePackInitializer instances, which will be invoked by Gerrit just before a ReceivePack instance will be used. Usually, plugins will make use of the setXXX methods on the ReceivePack to set additional properties on it.
The interactions with the core Gerrit ReceivePack initialization and between ReceivePackInitializers can be complex. Please read the ReceivePack Javadoc and Gerrit AsyncReceiveCommits implementation carefully.
Post Receive-Pack Hooks
Plugins may register PostReceiveHook instances in order to get notified when JGit successfully receives a pack. This may be useful for those plugins which would like to monitor changes in Git repositories.
Upload Pack Initializers
Plugins may provide UploadPackInitializer instances, which will be invoked by Gerrit just before a UploadPack instance will be used. Usually, plugins will make use of the setXXX methods on the UploadPack to set additional properties on it.
The interactions with the core Gerrit UploadPack initialization and between UploadPackInitializers can be complex. Please read the UploadPack Javadoc and Gerrit Upload/UploadFactory implementations carefully.
Pre Upload-Pack Hooks
Plugins may register PreUploadHook instances in order to get notified when JGit is about to upload a pack. This may be useful for those plugins which would like to monitor usage in Git repositories.
Post Upload-Pack Hooks
Plugins may register PostUploadHook instances in order to get notified after JGit is done uploading a pack.
SSH Commands
Plugins may provide commands that can be accessed through the SSH interface (extensions do not have this option).
Command implementations must extend the base class SshCommand:
import com.google.gerrit.sshd.SshCommand;
import com.google.gerrit.sshd.CommandMetaData;
@CommandMetaData(name="print", description="Print hello command")
class PrintHello extends SshCommand {
@Override
protected void run() {
stdout.print("Hello\n");
}
}
If no Guice modules are declared in the manifest, SSH commands may use
auto-registration by providing an @Export
annotation:
import com.google.gerrit.extensions.annotations.Export;
import com.google.gerrit.sshd.SshCommand;
@Export("print")
class PrintHello extends SshCommand {
@Override
protected void run() {
stdout.print("Hello\n");
}
}
If explicit registration is being used, a Guice module must be supplied
to register the SSH command and declared in the manifest with the
Gerrit-SshModule
attribute:
import com.google.gerrit.sshd.PluginCommandModule;
class MyCommands extends PluginCommandModule {
@Override
protected void configureCommands() {
command(PrintHello.class);
}
}
For a plugin installed as name helloworld
, the command implemented by
PrintHello class will be available to users as:
$ ssh -p 29418 review.example.com helloworld print
Multiple Commands bound to one implementation
Multiple SSH commands can be bound to the same implementation class. For example a Gerrit Shell plugin can bind different shell commands to the same implementation class:
public class SshShellModule extends PluginCommandModule {
@Override
protected void configureCommands() {
command("ls").to(ShellCommand.class);
command("ps").to(ShellCommand.class);
[...]
}
}
With the possible implementation:
public class ShellCommand extends SshCommand {
@Override
protected void run() throws UnloggedFailure {
String cmd = getName().substring(getPluginName().length() + 1);
ProcessBuilder proc = new ProcessBuilder(cmd);
Process cmd = proc.start();
[...]
}
}
And the call:
$ ssh -p 29418 review.example.com shell ls
$ ssh -p 29418 review.example.com shell ps
Root Level Commands
Single command plugins are also supported. In this scenario plugin binds
SSH command to its own name. SshModule
must inherit from
SingleCommandPluginModule
class:
public class SshModule extends SingleCommandPluginModule {
@Override
protected void configure(LinkedBindingBuilder<Command> b) {
b.to(ShellCommand.class);
}
}
If the plugin above is deployed under sh.jar file in $site/plugins
directory, generic commands can be called without specifying the actual
SSH command. Note in the example below, that the called commands ls
and ps
was not explicitly bound:
$ ssh -p 29418 review.example.com sh ls
$ ssh -p 29418 review.example.com sh ps
Search Operators
Plugins can define new search operators to extend change searching by
implementing the ChangeQueryBuilder.ChangeOperatorFactory
interface
and registering it to an operator name in the plugin module’s
configure()
method. The search operator name is defined during
registration via the DynamicMap annotation mechanism. The plugin name
will get appended to the annotated name, with an underscore in between,
leading to the final operator name. An example registration looks like
this:
bind(ChangeOperatorFactory.class)
.annotatedWith(Exports.named("sample"))
.to(SampleOperator.class);
If this is registered in the myplugin
plugin, then the resulting
operator will be named sample_myplugin
.
The search operator itself is implemented by ensuring that the
create()
method of the class implementing the
ChangeQueryBuilder.ChangeOperatorFactory
interface returns a
Predicate<ChangeData>
. Here is a sample operator factory definition
which creates a MyPredicate
:
@Singleton
public class SampleOperator
implements ChangeQueryBuilder.ChangeOperatorFactory {
public static class MyPredicate extends OperatorChangePredicate<ChangeData> {
...
}
@Override
public Predicate<ChangeData> create(ChangeQueryBuilder builder, String value)
throws QueryParseException {
return new MyPredicate(value);
}
}
Search Operands
Plugins can define new search operands to extend change searching.
Plugin methods implementing search operands (returning a
Predicate<ChangeData>
), must be defined on a class implementing one of
the ChangeQueryBuilder.ChangeOperandsFactory
interfaces (.e.g.,
ChangeQueryBuilder.ChangeHasOperandFactory). The specific
ChangeOperandFactory
class must also be bound to the DynamicSet
from
a module’s configure()
method in the plugin.
The new operand, when used in a search would appear as: operatorName:operandName_pluginName
A sample ChangeHasOperandFactory
class implementing, and registering,
a new has:sample_pluginName
operand is shown below:
@Singleton
public class SampleHasOperand implements ChangeHasOperandFactory {
public static class Module extends AbstractModule {
@Override
protected void configure() {
bind(ChangeHasOperandFactory.class)
.annotatedWith(Exports.named("sample")
.to(SampleHasOperand.class);
}
}
@Override
public Predicate<ChangeData> create(ChangeQueryBuilder builder)
throws QueryParseException {
return new HasSamplePredicate();
}
Command Options
Plugins can provide additional options for each of the gerrit ssh and
the REST API commands by implementing the DynamicBean interface and
registering it to a command class name in the plugin module’s
configure()
method. The plugin’s name will be prepended to the name of
each @Option annotation found on the DynamicBean object provided by the
plugin. The example below shows a plugin that adds an option to log a
value from the gerrit ban-commits ssh command.
public class SshModule extends AbstractModule {
private static final Logger log = LoggerFactory.getLogger(SshModule.class);
@Override
protected void configure() {
bind(DynamicOptions.DynamicBean.class)
.annotatedWith(Exports.named(
com.google.gerrit.sshd.commands.BanCommitCommand.class))
.to(BanOptions.class);
}
public static class BanOptions implements DynamicOptions.DynamicBean {
@Option(name = "--log", aliases = { "-l" }, usage = "Say Hello in the Log")
private void parse(String arg) {
log.error("Say Hello in the Log " + arg);
}
}
Query Attributes
Plugins can provide additional attributes to be returned in Gerrit queries by implementing the ChangeAttributeFactory interface and registering it to the ChangeQueryProcessor.ChangeAttributeFactory class in the plugin module’s configure() method. The new attribute(s) will be output under a “plugin” attribute in the change query output.
The example below shows a plugin that adds two attributes (exampleName and changeValue), to the change query output.
public class Module extends AbstractModule {
@Override
protected void configure() {
bind(ChangeAttributeFactory.class)
.annotatedWith(Exports.named("example"))
.to(AttributeFactory.class);
}
}
public class AttributeFactory implements ChangeAttributeFactory {
public class PluginAttribute extends PluginDefinedInfo {
public String exampleName;
public String changeValue;
public PluginAttribute(ChangeData c) {
this.exampleName = "Attribute Example";
this.changeValue = Integer.toString(c.getId().get());
}
}
@Override
public PluginDefinedInfo create(ChangeData c, ChangeQueryProcessor qp, String plugin) {
return new PluginAttribute(c);
}
}
Example
ssh -p 29418 localhost gerrit query "change:1" --format json
Output:
{
"url" : "http://localhost:8080/1",
"plugins" : [
{
"name" : "myplugin-name",
"exampleName" : "Attribute Example",
"changeValue" : "1"
}
],
...
}
Simple Configuration in gerrit.config
In Gerrit, global configuration is stored in the gerrit.config
file.
If a plugin needs global configuration, this configuration should be
stored in a plugin
subsection in the gerrit.config
file.
This approach of storing the plugin configuration is only suitable for
plugins that have a simple configuration that only consists of key-value
pairs. With this approach it is not possible to have subsections in the
plugin configuration. Plugins that require a complex configuration need
to store their configuration in their own configuration
file where they can make use of subsections. On the
other hand storing the plugin configuration in a plugin subsection in
the gerrit.config
file has the advantage that administrators have all
configuration parameters in one file, instead of having one
configuration file per plugin.
To avoid conflicts with other plugins, it is recommended that plugins
only use the plugin
subsection with their own name. For example the
helloworld
plugin should store its configuration in the
plugin.helloworld
subsection:
[plugin "helloworld"]
language = Latin
Via the com.google.gerrit.server.config.PluginConfigFactory
class a
plugin can easily access its configuration and there is no need for a
plugin to parse the gerrit.config
file on its own:
@Inject
private com.google.gerrit.server.config.PluginConfigFactory cfg;
[...]
String language = cfg.getFromGerritConfig("helloworld")
.getString("language", "English");
Configuration in own config file
Plugins can store their configuration in an own configuration file. This
makes sense if the plugin configuration is rather complex and requires
the usage of subsections. Plugins that have a simple key-value pair
configuration can store their configuration in a plugin
subsection of
the gerrit.config
file.
The plugin configuration file must be named after the plugin and must be
located in the etc
folder of the review site. For example a
configuration file for a default-reviewer
plugin could look like this:
$site_path/etc/default-reviewer.config.
[branch "refs/heads/master"]
reviewer = Project Owners
reviewer = john.doe@example.com
[match "file:^.*\.txt"]
reviewer = My Info Developers
Plugins that have sensitive configuration settings can store those
settings in an own secure configuration file. The plugin’s secure
configuration file must be named after the plugin and must be located in
the etc
folder of the review site. For example a secure configuration
file for a default-reviewer
plugin could look like this:
$site_path/etc/default-reviewer.secure.config.
[auth]
password = secret
Via the com.google.gerrit.server.config.PluginConfigFactory
class a
plugin can easily access its configuration:
@Inject
private com.google.gerrit.server.config.PluginConfigFactory cfg;
[...]
String[] reviewers = cfg.getGlobalPluginConfig("default-reviewer")
.getStringList("branch", "refs/heads/master", "reviewer");
String password = cfg.getGlobalPluginConfig("default-reviewer")
.getString("auth", null, "password");
Simple Project Specific Configuration in project.config
In Gerrit, project specific configuration is stored in the project’s
project.config
file on the refs/meta/config
branch. If a plugin
needs configuration on project level (e.g. to enable its functionality
only for certain projects), this configuration should be stored in a
plugin
subsection in the project’s project.config
file.
This approach of storing the plugin configuration is only suitable for
plugins that have a simple configuration that only consists of key-value
pairs. With this approach it is not possible to have subsections in the
plugin configuration. Plugins that require a complex configuration need
to store their configuration in their own configuration
file where they can make use of
subsections. On the other hand storing the plugin configuration in a
plugin subsection in the project.config
file has the advantage that
project owners have all configuration parameters in one file, instead of
having one configuration file per plugin.
To avoid conflicts with other plugins, it is recommended that plugins
only use the plugin
subsection with their own name. For example the
helloworld
plugin should store its configuration in the
plugin.helloworld
subsection:
[plugin "helloworld"]
enabled = true
Via the com.google.gerrit.server.config.PluginConfigFactory
class a
plugin can easily access its project specific configuration and there is
no need for a plugin to parse the project.config
file on its own:
@Inject
private com.google.gerrit.server.config.PluginConfigFactory cfg;
[...]
boolean enabled = cfg.getFromProjectConfig(project, "helloworld")
.getBoolean("enabled", false);
It is also possible to get missing configuration parameters inherited from the parent projects:
@Inject
private com.google.gerrit.server.config.PluginConfigFactory cfg;
[...]
boolean enabled = cfg.getFromProjectConfigWithInheritance(project, "helloworld")
.getBoolean("enabled", false);
Project owners can edit the project configuration by fetching the
refs/meta/config
branch, editing the project.config
file and pushing
the commit back.
Plugin configuration values that are stored in the project.config
file
can be exposed in the ProjectInfoScreen to allow project owners to see
and edit them from the UI.
For this an instance of ProjectConfigEntry
needs to be bound for each
parameter. The export name must be a valid Git variable name. The
variable name is case-insensitive, allows only alphanumeric characters
and -, and must start with an alphabetic character.
The example below shows how the parameters plugin.helloworld.enabled
and plugin.helloworld.language
are bound to be editable from the Web
UI. For the parameter plugin.helloworld.enabled
“Enable Greeting” is
provided as display name and the default value is set to true
. For the
parameter plugin.helloworld.language
“Preferred Language” is provided
as display name and “en” is set as default value.
class Module extends AbstractModule {
@Override
protected void configure() {
bind(ProjectConfigEntry.class)
.annotatedWith(Exports.named("enabled"))
.toInstance(new ProjectConfigEntry("Enable Greeting", true));
bind(ProjectConfigEntry.class)
.annotatedWith(Exports.named("language"))
.toInstance(new ProjectConfigEntry("Preferred Language", "en"));
}
}
By overwriting the onUpdate
method of ProjectConfigEntry
plugins can
be notified when this configuration parameter is updated on a project.
Referencing groups in project.config
Plugins can refer to groups so that when they are renamed, the project
config will also be updated in this section. The proper format to use is
the same as for any other group reference in the project.config
, as
shown below.
group group_name
The file groups
must also contains the mapping of the group name and
its UUID, refer to file groups
Project Specific Configuration in own config file
Plugins can store their project specific configuration in an own
configuration file in the projects refs/meta/config
branch. This makes
sense if the plugins project specific configuration is rather complex
and requires the usage of subsections. Plugins that have a simple
key-value pair configuration can store their project specific
configuration in a plugin
subsection of the project.config
file.
The plugin configuration file in the refs/meta/config
branch must be
named after the plugin. For example a configuration file for a
default-reviewer
plugin could look like this:
default-reviewer.config.
[branch "refs/heads/master"]
reviewer = Project Owners
reviewer = john.doe@example.com
[match "file:^.*\.txt"]
reviewer = My Info Developers
Via the com.google.gerrit.server.config.PluginConfigFactory
class a
plugin can easily access its project specific configuration:
@Inject
private com.google.gerrit.server.config.PluginConfigFactory cfg;
[...]
String[] reviewers = cfg.getProjectPluginConfig(project, "default-reviewer")
.getStringList("branch", "refs/heads/master", "reviewer");
It is also possible to get missing configuration parameters inherited from the parent projects:
@Inject
private com.google.gerrit.server.config.PluginConfigFactory cfg;
[...]
String[] reviewers = cfg.getProjectPluginConfigWithInheritance(project, "default-reviewer")
.getStringList("branch", "refs/heads/master", "reviewer");
Project owners can edit the project configuration by fetching the
refs/meta/config
branch, editing the <plugin-name>.config
file and
pushing the commit back.
React on changes in project configuration
If a plugin wants to react on changes in the project configuration, it
can implement a GitReferenceUpdatedListener
and filter on events for
the refs/meta/config
branch:
public class MyListener implements GitReferenceUpdatedListener {
private final MetaDataUpdate.Server metaDataUpdateFactory;
@Inject
MyListener(MetaDataUpdate.Server metaDataUpdateFactory) {
this.metaDataUpdateFactory = metaDataUpdateFactory;
}
@Override
public void onGitReferenceUpdated(Event event) {
if (event.getRefName().equals(RefNames.REFS_CONFIG)) {
Project.NameKey p = new Project.NameKey(event.getProjectName());
try {
ProjectConfig oldCfg = parseConfig(p, event.getOldObjectId());
ProjectConfig newCfg = parseConfig(p, event.getNewObjectId());
if (oldCfg != null && newCfg != null
&& !oldCfg.getProject().getSubmitType().equals(newCfg.getProject().getSubmitType())) {
// submit type has changed
...
}
} catch (IOException | ConfigInvalidException e) {
...
}
}
}
private ProjectConfig parseConfig(Project.NameKey p, String idStr)
throws IOException, ConfigInvalidException, RepositoryNotFoundException {
ObjectId id = ObjectId.fromString(idStr);
if (ObjectId.zeroId().equals(id)) {
return null;
}
return ProjectConfig.read(metaDataUpdateFactory.create(p), id);
}
}
Plugin Owned Capabilities
Plugins may provide their own capabilities and restrict usage of SSH
commands or UiAction
to the users who are granted those capabilities.
Plugins define the capabilities by overriding the CapabilityDefinition
abstract class:
public class PrintHelloCapability extends CapabilityDefinition {
@Override
public String getDescription() {
return "Print Hello";
}
}
If no Guice modules are declared in the manifest, capability may use
auto-registration by providing an @Export
annotation:
@Export("printHello")
public class PrintHelloCapability extends CapabilityDefinition {
[...]
}
Otherwise the capability must be bound in a plugin module:
public class HelloWorldModule extends AbstractModule {
@Override
protected void configure() {
bind(CapabilityDefinition.class)
.annotatedWith(Exports.named("printHello"))
.to(PrintHelloCapability.class);
}
}
With a plugin-owned capability defined in this way, it is possible to
restrict usage of an SSH command or UiAction
to members of the group
that were granted this capability in the usual way, using the
RequiresCapability
annotation:
@RequiresCapability("printHello")
@CommandMetaData(name="print", description="Print greeting in different languages")
public final class PrintHelloWorldCommand extends SshCommand {
[...]
}
Or with UiAction
:
@RequiresCapability("printHello")
public class SayHelloAction extends UiAction<RevisionResource>
implements RestModifyView<RevisionResource, SayHelloAction.Input> {
[...]
}
Capability scope was introduced to differentiate between plugin-owned
capabilities and core capabilities. Per default the scope of the
@RequiresCapability
annotation is CapabilityScope.CONTEXT
, that
means:
-
when
@RequiresCapability
is used within a plugin the scope of the capability is assumed to be that plugin. -
If
@RequiresCapability
is used within the core Gerrit Code Review server (and thus is outside of a plugin) the scope is the core server and will use theGlobalCapability
known to Gerrit Code Review server.
If a plugin needs to use a core capability name (e.g.
“administrateServer”) this can be specified by setting scope =
CapabilityScope.CORE
:
@RequiresCapability(value = "administrateServer", scope =
CapabilityScope.CORE)
[...]
UI Extension
Panels
GWT plugins can contribute panels to Gerrit screens.
Gerrit screens define extension points where plugins can add GWT panels with custom controls:
-
Change Screen:
-
GerritUiExtensionPoint.CHANGE_SCREEN_HEADER
:Panel will be shown in the header bar to the right of the change status.
-
GerritUiExtensionPoint.CHANGE_SCREEN_HEADER_RIGHT_OF_BUTTONS
:Panel will be shown in the header bar on the right side of the buttons.
-
GerritUiExtensionPoint.CHANGE_SCREEN_HEADER_RIGHT_OF_POP_DOWNS
:Panel will be shown in the header bar on the right side of the pop down buttons.
-
GerritUiExtensionPoint.CHANGE_SCREEN_BELOW_COMMIT_INFO_BLOCK
:Panel will be shown below the commit info block.
-
GerritUiExtensionPoint.CHANGE_SCREEN_BELOW_CHANGE_INFO_BLOCK
:Panel will be shown below the change info block.
-
GerritUiExtensionPoint.CHANGE_SCREEN_BELOW_RELATED_INFO_BLOCK
:Panel will be shown below the related info block.
-
GerritUiExtensionPoint.CHANGE_SCREEN_HISTORY_RIGHT_OF_BUTTONS
:Panel will be shown in the history bar on the right side of the buttons.
-
The following parameters are provided:
-
GerritUiExtensionPoint.Key.CHANGE_INFO
:The ChangeInfo entity for the current change.
The RevisionInfo entity for the current patch set.
-
-
-
Project Info Screen:
-
GerritUiExtensionPoint.PROJECT_INFO_SCREEN_TOP
:Panel will be shown at the top of the screen.
-
GerritUiExtensionPoint.PROJECT_INFO_SCREEN_BOTTOM
:Panel will be shown at the bottom of the screen.
-
The following parameters are provided:
-
GerritUiExtensionPoint.Key.PROJECT_NAME
:The name of the project.
-
-
-
User Password Screen:
-
GerritUiExtensionPoint.PASSWORD_SCREEN_BOTTOM
:Panel will be shown at the bottom of the screen.
-
The following parameters are provided:
-
GerritUiExtensionPoint.Key.ACCOUNT_INFO
:The AccountInfo entity for the current user.
-
-
-
User Preferences Screen:
-
GerritUiExtensionPoint.PREFERENCES_SCREEN_BOTTOM
:Panel will be shown at the bottom of the screen.
-
The following parameters are provided:
-
GerritUiExtensionPoint.Key.ACCOUNT_INFO
:The AccountInfo entity for the current user.
-
-
-
User Profile Screen:
-
GerritUiExtensionPoint.PROFILE_SCREEN_BOTTOM
:Panel will be shown at the bottom of the screen below the grid with the profile data.
-
The following parameters are provided:
-
GerritUiExtensionPoint.Key.ACCOUNT_INFO
:The AccountInfo entity for the current user.
-
-
Example panel:
public class MyPlugin extends PluginEntryPoint {
@Override
public void onPluginLoad() {
Plugin.get().panel(GerritUiExtensionPoint.CHANGE_SCREEN_BELOW_CHANGE_INFO_BLOCK,
"my_panel_name",
new Panel.EntryPoint() {
@Override
public void onLoad(Panel panel) {
panel.setWidget(new InlineLabel("My Panel for change "
+ panel.getInt(GerritUiExtensionPoint.Key.CHANGE_ID, -1));
}
});
}
}
Change Screen panel ordering may be specified in the project config. Values may be either “plugin name” or “plugin name”.”panel name”. Panels not specified in the config will be added to the end in load order. Panels specified in the config that are not found will be ignored.
Example config:
[extension-panels "CHANGE_SCREEN_BELOW_CHANGE_INFO_BLOCK"]
panel = helloworld.change_id
panel = myotherplugin
panel = myplugin.my_panel_name
Actions
Plugins can contribute UI actions on core Gerrit pages. This is useful for workflow customization or exposing plugin functionality through the UI in addition to SSH commands and the REST API.
For instance a plugin to integrate Jira with Gerrit changes may contribute a “File bug” button to allow filing a bug from the change page or plugins to integrate continuous integration systems may contribute a “Schedule” button to allow a CI build to be scheduled manually from the patch set panel.
Two different places on core Gerrit pages are supported:
-
Change screen
-
Project info screen
Plugins contribute UI actions by implementing the UiAction
interface:
@RequiresCapability("printHello")
class HelloWorldAction implements UiAction<RevisionResource>,
RestModifyView<RevisionResource, HelloWorldAction.Input> {
static class Input {
boolean french;
String message;
}
private Provider<CurrentUser> user;
@Inject
HelloWorldAction(Provider<CurrentUser> user) {
this.user = user;
}
@Override
public String apply(RevisionResource rev, Input input) {
final String greeting = input.french
? "Bonjour"
: "Hello";
return String.format("%s %s from change %s, patch set %d!",
greeting,
Strings.isNullOrEmpty(input.message)
? Objects.firstNonNull(user.get().getUserName(), "world")
: input.message,
rev.getChange().getId().toString(),
rev.getPatchSet().getPatchSetId());
}
@Override
public Description getDescription(
RevisionResource resource) {
return new Description()
.setLabel("Say hello")
.setTitle("Say hello in different languages");
}
}
Sometimes plugins may want to be able to change the state of a patch set
or change in the UiAction.apply()
method and reflect these changes on
the core UI. For example a buildbot plugin which exposes a Schedule
button on the patch set panel may want to disable that button after the
build was scheduled and update the tooltip of that button. But because
of Gerrit’s caching strategy the following must be taken into
consideration.
The browser is allowed to cache the UiAction
information until
something on the change is modified. More accurately the change row
needs to be modified in the database to have a more recent
lastUpdatedOn
or a new rowVersion
, or the refs/meta/config
of the
project or any parents needs to change to a new SHA-1. The ETag SHA-1
computation code can be found in the ChangeResource.getETag()
method.
The easiest way to accomplish this is to update lastUpdatedOn
of the
change:
@Override
public Object apply(RevisionResource rcrs, Input in) {
// schedule a build
[...]
// update change
ReviewDb db = dbProvider.get();
try (BatchUpdate bu = batchUpdateFactory.create(
db, project.getNameKey(), user, TimeUtil.nowTs())) {
bu.addOp(change.getId(), new BatchUpdate.Op() {
@Override
public boolean updateChange(ChangeContext ctx) {
return true;
}
});
bu.execute();
}
[...]
}
UiAction
must be bound in a plugin module:
public class Module extends AbstractModule {
@Override
protected void configure() {
install(new RestApiModule() {
@Override
protected void configure() {
post(REVISION_KIND, "say-hello")
.to(HelloWorldAction.class);
}
});
}
}
The module above must be declared in the pom.xml
for Maven driven
plugins:
<manifestEntries>
<Gerrit-Module>com.googlesource.gerrit.plugins.cookbook.Module</Gerrit-Module>
</manifestEntries>
or in the BUILD
configuration file for Bazel driven plugins:
manifest_entries = [
'Gerrit-Module: com.googlesource.gerrit.plugins.cookbook.Module',
]
In some use cases more user input must be gathered, for that UiAction
can be combined with the JavaScript API. This would display a small
popup near the activation button to gather additional input from the
user. The JS file is typically put in the static
folder within the
plugin’s directory:
Gerrit.install(function(self) {
function onSayHello(c) {
var f = c.textfield();
var t = c.checkbox();
var b = c.button('Say hello', {onclick: function(){
c.call(
{message: f.value, french: t.checked},
function(r) {
c.hide();
window.alert(r);
c.refresh();
});
}});
c.popup(c.div(
c.prependLabel('Greeting message', f),
c.br(),
c.label(t, 'french'),
c.br(),
b));
f.focus();
}
self.onAction('revision', 'say-hello', onSayHello);
});
The JS module must be exposed as a WebUiPlugin
and bound as an HTTP
Module:
public class HttpModule extends HttpPluginModule {
@Override
protected void configureServlets() {
DynamicSet.bind(binder(), WebUiPlugin.class)
.toInstance(new JavaScriptPlugin("hello.js"));
}
}
The HTTP module above must be declared in the pom.xml
for Maven driven
plugins:
<manifestEntries>
<Gerrit-HttpModule>com.googlesource.gerrit.plugins.cookbook.HttpModule</Gerrit-HttpModule>
</manifestEntries>
or in the BUILD
configuration file for Bazel driven plugins
manifest_entries = [
'Gerrit-HttpModule: com.googlesource.gerrit.plugins.cookbook.HttpModule',
]
If UiAction
is annotated with the @RequiresCapability
annotation,
then the capability check is done during the UiAction
gathering, so
the plugin author doesn’t have to set
UiAction.Description.setVisible()
explicitly in this case.
The following prerequisites must be met, to satisfy the capability check:
-
user is authenticated
-
user is a member of a group which has the
Administrate Server
capability, or -
user is a member of a group which has the required capability
The apply
method is called when the button is clicked. If UiAction
is combined with JavaScript API (its own JavaScript function is
provided), then a popup dialog is normally opened to gather additional
user input. A new button is placed on the popup dialog to actually send
the request.
Every UiAction
exposes a REST API endpoint. The endpoint from the
example above can be accessed from any REST client, i. e.:
curl -X POST -H "Content-Type: application/json" \
-d '{message: "François", french: true}' \
--user joe:secret \
http://host:port/a/changes/1/revisions/1/cookbook~say-hello
"Bonjour François from change 1, patch set 1!"
A special case is to bind an endpoint without a view name. This is
particularly useful for DELETE
requests:
public class Module extends AbstractModule {
@Override
protected void configure() {
install(new RestApiModule() {
@Override
protected void configure() {
delete(PROJECT_KIND)
.to(DeleteProject.class);
}
});
}
}
For a UiAction
bound this way, a JS API function can be provided.
Currently only one restriction exists: per plugin only one UiAction
can be bound per resource without view name. To define a JS function for
the UiAction
, “/” must be used as the name:
Gerrit.install(function(self) {
function onDeleteProject(c) {
[...]
}
self.onAction('project', '/', onDeleteProject);
});
Action Visitors
In addition to providing new actions, plugins can have fine-grained control over the ActionInfo map, modifying or removing existing actions, including those contributed by core.
Visitors are provided the
ActionInfo, which is mutable, along
with copies of the ChangeInfo and
RevisionInfo. They can modify the
action, or return false
to exclude it from the resulting map.
These operations only affect the action buttons that are displayed in the UI; the underlying REST API endpoints are not affected. Multiple plugins may implement the visitor interface, but the order in which they are run is undefined.
For example, to exclude “Cherry-Pick” only from certain projects, and rename “Abandon”:
public class MyActionVisitor implements ActionVisitor {
@Override
public boolean visit(String name, ActionInfo actionInfo,
ChangeInfo changeInfo) {
if (name.equals("abandon")) {
actionInfo.label = "Drop";
}
return true;
}
@Override
public boolean visit(String name, ActionInfo actionInfo,
ChangeInfo changeInfo, RevisionInfo revisionInfo) {
if (project.startsWith("some-team/") && name.equals("cherrypick")) {
return false;
}
return true;
}
}
Top Menu Extensions
Plugins can contribute items to Gerrit’s top menu.
A single top menu extension can have multiple elements and will be put as the last element in Gerrit’s top menu.
Plugins define the top menu entries by implementing TopMenu
interface:
public class MyTopMenuExtension implements TopMenu {
@Override
public List<MenuEntry> getEntries() {
return Lists.newArrayList(
new MenuEntry("Top Menu Entry", Lists.newArrayList(
new MenuItem("Gerrit", "http://gerrit.googlecode.com/"))));
}
}
Plugins can also add additional menu items to Gerrit’s top menu entries
by defining a MenuEntry
that has the same name as a Gerrit top menu
entry:
public class MyTopMenuExtension implements TopMenu {
@Override
public List<MenuEntry> getEntries() {
return Lists.newArrayList(
new MenuEntry(GerritTopMenu.PROJECTS, Lists.newArrayList(
new MenuItem("Browse Repositories", "https://gerrit.googlesource.com/"))));
}
}
MenuItems
that are bound for the MenuEntry
with the name
GerritTopMenu.PROJECTS
can contain a ${projectName}
placeholder
which is automatically replaced by the actual project name.
E.g. plugins may register an HTTP Servlet to handle project specific requests and add an menu item for this:
---
new MenuItem("My Screen", "/plugins/myplugin/project/${projectName}");
---
This also enables plugins to provide menu items for project aware screens:
---
new MenuItem("My Screen", "/x/my-screen/for/${projectName}");
---
If no Guice modules are declared in the manifest, the top menu extension
may use auto-registration by providing an @Listen
annotation:
@Listen
public class MyTopMenuExtension implements TopMenu {
[...]
}
Otherwise the top menu extension must be bound in the plugin module used for the Gerrit system injector (Gerrit-Module entry in MANIFEST.MF):
package com.googlesource.gerrit.plugins.helloworld;
public class HelloWorldModule extends AbstractModule {
@Override
protected void configure() {
DynamicSet.bind(binder(), TopMenu.class).to(MyTopMenuExtension.class);
}
}
Gerrit-ApiType: plugin
Gerrit-Module: com.googlesource.gerrit.plugins.helloworld.HelloWorldModule
It is also possible to show some menu entries only if the user has a certain capability:
public class MyTopMenuExtension implements TopMenu {
private final String pluginName;
private final Provider<CurrentUser> userProvider;
private final List<MenuEntry> menuEntries;
@Inject
public MyTopMenuExtension(@PluginName String pluginName,
Provider<CurrentUser> userProvider) {
this.pluginName = pluginName;
this.userProvider = userProvider;
menuEntries = new ArrayList<TopMenu.MenuEntry>();
// add menu entry that is only visible to users with a certain capability
if (canSeeMenuEntry()) {
menuEntries.add(new MenuEntry("Top Menu Entry", Collections
.singletonList(new MenuItem("Gerrit", "http://gerrit.googlecode.com/"))));
}
// add menu entry that is visible to all users (even anonymous users)
menuEntries.add(new MenuEntry("Top Menu Entry", Collections
.singletonList(new MenuItem("Documentation", "/plugins/myplugin/"))));
}
private boolean canSeeMenuEntry() {
if (userProvider.get().isIdentifiedUser()) {
CapabilityControl ctl = userProvider.get().getCapabilities();
return ctl.canPerform(pluginName + "-" + MyCapability.ID)
|| ctl.canAdministrateServer();
} else {
return false;
}
}
@Override
public List<MenuEntry> getEntries() {
return menuEntries;
}
}
GWT UI Extension
Plugins can extend the Gerrit UI with own GWT code.
A GWT plugin must contain a GWT module file, e.g. HelloPlugin.gwt.xml
,
that bundles together all the configuration settings of the GWT plugin:
<?xml version="1.0" encoding="UTF-8"?>
<module rename-to="hello_gwt_plugin">
<!-- Inherit the core Web Toolkit stuff. -->
<inherits name="com.google.gwt.user.User"/>
<!-- Other module inherits -->
<inherits name="com.google.gerrit.Plugin"/>
<inherits name="com.google.gwt.http.HTTP"/>
<!-- Using GWT built-in themes adds a number of static -->
<!-- resources to the plugin. No theme inherits lines were -->
<!-- added in order to make this plugin as simple as possible -->
<!-- Specify the app entry point class. -->
<entry-point class="${package}.client.HelloPlugin"/>
<stylesheet src="hello.css"/>
</module>
The GWT module must inherit com.google.gerrit.Plugin
and
com.google.gwt.http.HTTP
.
To register the GWT module a GwtPlugin
needs to be bound.
If no Guice modules are declared in the manifest, the GWT plugin may use
auto-registration by using the @Listen
annotation:
@Listen
public class MyExtension extends GwtPlugin {
public MyExtension() {
super("hello_gwt_plugin");
}
}
Otherwise the binding must be done in an HttpModule
:
public class HttpModule extends HttpPluginModule {
@Override
protected void configureServlets() {
DynamicSet.bind(binder(), WebUiPlugin.class)
.toInstance(new GwtPlugin("hello_gwt_plugin"));
}
}
The HTTP module above must be declared in the pom.xml
for Maven driven
plugins:
<manifestEntries>
<Gerrit-HttpModule>com.googlesource.gerrit.plugins.myplugin.HttpModule</Gerrit-HttpModule>
</manifestEntries>
The name that is provided to the GwtPlugin
must match the GWT module
name compiled into the plugin. The name of the GWT module can be
explicitly set in the GWT module XML file by specifying the rename-to
attribute on the module. It is important that the module name be unique
across all plugins installed on the server, as the module name
determines the JavaScript namespace used by the compiled plugin code.
<module rename-to="hello_gwt_plugin">
The actual GWT code must be implemented in a class that extends
com.google.gerrit.plugin.client.PluginEntryPoint
:
public class HelloPlugin extends PluginEntryPoint {
@Override
public void onPluginLoad() {
// Create the dialog box
final DialogBox dialogBox = new DialogBox();
// The content of the dialog comes from a User specified Preference
dialogBox.setText("Hello from GWT Gerrit UI plugin");
dialogBox.setAnimationEnabled(true);
Button closeButton = new Button("Close");
VerticalPanel dialogVPanel = new VerticalPanel();
dialogVPanel.setWidth("100%");
dialogVPanel.setHorizontalAlignment(VerticalPanel.ALIGN_CENTER);
dialogVPanel.add(closeButton);
closeButton.addClickHandler(new ClickHandler() {
public void onClick(ClickEvent event) {
dialogBox.hide();
}
});
// Set the contents of the Widget
dialogBox.setWidget(dialogVPanel);
RootPanel rootPanel = RootPanel.get(HelloMenu.MENU_ID);
rootPanel.getElement().removeAttribute("href");
rootPanel.addDomHandler(new ClickHandler() {
@Override
public void onClick(ClickEvent event) {
dialogBox.center();
dialogBox.show();
}
}, ClickEvent.getType());
}
}
This class must be set as entry point in the GWT module:
<entry-point class="${package}.client.HelloPlugin"/>
In addition this class must be defined as module in the pom.xml
for
the gwt-maven-plugin
and the webappDirectory
option of
gwt-maven-plugin
must be set to
${project.build.directory}/classes/static
:
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>gwt-maven-plugin</artifactId>
<version>2.7.0</version>
<configuration>
<module>com.googlesource.gerrit.plugins.myplugin.HelloPlugin</module>
<disableClassMetadata>true</disableClassMetadata>
<disableCastChecking>true</disableCastChecking>
<webappDirectory>${project.build.directory}/classes/static</webappDirectory>
</configuration>
<executions>
<execution>
<goals>
<goal>compile</goal>
</goals>
</execution>
</executions>
</plugin>
To attach a GWT widget defined by the plugin to the Gerrit core UI
com.google.gwt.user.client.ui.RootPanel
can be used to manipulate the
Gerrit core widgets:
RootPanel rootPanel = RootPanel.get(HelloMenu.MENU_ID);
rootPanel.getElement().removeAttribute("href");
rootPanel.addDomHandler(new ClickHandler() {
@Override
public void onClick(ClickEvent event) {
dialogBox.center();
dialogBox.show();
}
}, ClickEvent.getType());
GWT plugins can come with their own css file. This css file must have a unique name and must be registered in the GWT module:
<stylesheet src="hello.css"/>
If a GWT plugin wants to invoke the Gerrit REST API it can use
com.google.gerrit.plugin.client.rpc.RestApi
to construct the URL path
and to trigger the REST calls.
Example for invoking a Gerrit core REST endpoint:
new RestApi("projects").id(projectName).view("description")
.put("new description", new AsyncCallback<JavaScriptObject>() {
@Override
public void onSuccess(JavaScriptObject result) {
// TODO
}
@Override
public void onFailure(Throwable caught) {
// never invoked
}
});
Example for invoking a REST endpoint defined by a plugin:
new RestApi("projects").id(projectName).view("myplugin", "myview")
.get(new AsyncCallback<JavaScriptObject>() {
@Override
public void onSuccess(JavaScriptObject result) {
// TODO
}
@Override
public void onFailure(Throwable caught) {
// never invoked
}
});
The onFailure(Throwable)
of the provided callback is never invoked. If
an error occurs, it is shown in an error dialog.
In order to be able to do REST calls the GWT module must inherit
com.google.gwt.json.JSON
:
<inherits name="com.google.gwt.json.JSON"/>
Add Screen
A GWT plugin can add a menu item that opens a screen that is implemented by the plugin. This way plugin screens can be fully integrated into the Gerrit UI.
Example menu item:
public class MyMenu implements TopMenu {
private final List<MenuEntry> menuEntries;
@Inject
public MyMenu(@PluginName String name) {
menuEntries = new ArrayList<>();
menuEntries.add(new MenuEntry("My Menu", Collections.singletonList(
new MenuItem("My Screen", "#/x/" + name + "/my-screen", ""))));
}
@Override
public List<MenuEntry> getEntries() {
return menuEntries;
}
}
Example screen:
public class MyPlugin extends PluginEntryPoint {
@Override
public void onPluginLoad() {
Plugin.get().screen("my-screen", new Screen.EntryPoint() {
@Override
public void onLoad(Screen screen) {
screen.add(new InlineLabel("My Screen");
screen.show();
}
});
}
}
Add User Settings Screen
A GWT plugin can implement a user settings screen that is integrated into the Gerrit user settings menu.
Example settings screen:
public class MyPlugin extends PluginEntryPoint {
@Override
public void onPluginLoad() {
Plugin.get().settingsScreen("my-preferences", "My Preferences",
new Screen.EntryPoint() {
@Override
public void onLoad(Screen screen) {
screen.setPageTitle("Settings");
screen.add(new InlineLabel("My Preferences"));
screen.show();
}
});
}
}
By defining an urlAlias Gerrit administrators can map plugin screens into the Gerrit URL namespace or even replace Gerrit screens by plugin screens.
Plugins may also programatically add URL aliases in the preferences of of a user. This way certain screens can be replaced for certain users. E.g. the plugin may offer a user preferences setting for choosing a screen that then sets/unsets a URL alias for the user.
Plugin Settings Screen
If a plugin implements a screen for administrating its settings that is available under “#/x/<plugin-name>/settings” it is automatically linked from the plugin list screen.
HTTP Servlets
Plugins or extensions may register additional HTTP servlets, and wrap them with HTTP filters.
Servlets may use auto-registration to declare the URL they handle:
import com.google.gerrit.extensions.annotations.Export;
import com.google.inject.Singleton;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
@Export("/print")
@Singleton
class HelloServlet extends HttpServlet {
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws IOException {
res.setContentType("text/plain");
res.setCharacterEncoding("UTF-8");
res.getWriter().write("Hello");
}
}
The auto registration only works for standard servlet mappings like
/foo
or +/foo/*+
. Regex style bindings must use a Guice
ServletModule to register the HTTP servlets and declare it explicitly in
the manifest with the Gerrit-HttpModule
attribute:
import com.google.inject.servlet.ServletModule;
class MyWebUrls extends ServletModule {
protected void configureServlets() {
serve("/print").with(HelloServlet.class);
}
}
For a plugin installed as name helloworld
, the servlet implemented by
HelloServlet class will be available to users as:
$ curl http://review.example.com/plugins/helloworld/print
Data Directory
Plugins can request a data directory with a @PluginData
Path (or File,
deprecated) dependency. A data directory will be created automatically
by the server in $site_path/data/$plugin_name
and passed to the
plugin.
Plugins can use this to store any data they want.
@Inject
MyType(@PluginData java.nio.file.Path myDir) {
this.in = Files.newInputStream(myDir.resolve("my.config"));
}
SecureStore
SecureStore allows to change the way Gerrit stores sensitive data like passwords.
In order to replace the default SecureStore (no-op) implementation, a
class that extends com.google.gerrit.server.securestore.SecureStore
needs to be provided (with dependencies) in a separate jar file. Then
SwitchSecureStore must be run to switch
implementations.
The SecureStore implementation is instantiated using a Guice injector
which binds the File
annotated with the @SitePath
annotation. This
means that a SecureStore implementation class can get access to the
site_path
like in the following example:
@Inject
MySecureStore(@SitePath java.io.File sitePath) {
// your code
}
No Guice bindings or modules are required. Gerrit will automatically discover and bind the implementation.
Account Creation
Plugins can hook into the account
creation REST API and inject
additional external identifiers for an account that represents a user in
some external user store. For that, an implementation of the extension
point com.google.gerrit.server.account.AccountExternalIdCreator
must
be registered.
class MyExternalIdCreator implements AccountExternalIdCreator {
@Override
public List<AccountExternalId> create(Account.Id id, String username,
String email) {
// your code
}
}
bind(AccountExternalIdCreator.class)
.annotatedWith(UniqueAnnotations.create())
.to(MyExternalIdCreator.class);
}
Download Commands
Gerrit offers commands for downloading changes and cloning projects
using different download schemes (e.g. for downloading via different
network protocols). Plugins can contribute download schemes, download
commands and clone commands by implementing
com.google.gerrit.extensions.config.DownloadScheme
,
com.google.gerrit.extensions.config.DownloadCommand
and
com.google.gerrit.extensions.config.CloneCommand
.
The download schemes, download commands and clone commands which are
used most often are provided by the Gerrit core plugin
download-commands
.
Included In
For merged changes the Included In drop-down panel shows the branches and tags in which the change is included.
Plugins can add additional systems in which the change can be included
by implementing
com.google.gerrit.extensions.config.ExternalIncludedIn
, e.g. a plugin
can provide a list of servers on which the change was deployed.
Links To External Tools
Gerrit has extension points that enables development of a light-weight plugin that links commits to external tools (GitBlit, CGit, company specific resources etc).
PatchSetWebLinks will appear to the right of the commit-SHA1 in the UI.
import com.google.gerrit.extensions.annotations.Listen;
import com.google.gerrit.extensions.webui.PatchSetWebLink;;
import com.google.gerrit.extensions.webui.WebLinkTarget;
@Listen
public class MyWeblinkPlugin implements PatchSetWebLink {
private String name = "MyLink";
private String placeHolderUrlProjectCommit = "http://my.tool.com/project=%s/commit=%s";
private String imageUrl = "http://placehold.it/16x16.gif";
@Override
public WebLinkInfo getPatchSetWebLink(String projectName, String commit) {
return new WebLinkInfo(name,
imageUrl,
String.format(placeHolderUrlProjectCommit, project, commit),
WebLinkTarget.BLANK);
}
}
ParentWebLinks will appear to the right of the SHA1 of the parent revisions in the UI. The implementation should in most use cases direct to the same external service as PatchSetWebLink; it is provided as a separate interface because not all users want to have links for the parent revisions.
FileWebLinks will appear in the side-by-side diff screen on the right side of the patch selection on each side.
DiffWebLinks will appear in the side-by-side and unified diff screen in the header next to the navigation icons.
ProjectWebLinks will appear in the project list in the Repository
Browser
column.
BranchWebLinks will appear in the branch list in the last column.
FileHistoryWebLinks will appear on the access rights screen.
TagWebLinks will appear in the tag list in the last column.
If a get*WebLink
implementation returns null
, the link will be
omitted. This allows the plugin to selectively “enable” itself on a
per-project/branch/file basis.
LFS Storage Plugins
Gerrit provides an extension point that enables development of LFS
(Large File
Storage)
storage plugins. Gerrit core exposes the default LFS protocol endpoint
<project-name>/info/lfs/objects/batch
and forwards the requests to the
configured lfs.plugin plugin which implements
the LFS protocol. By exposing the default LFS endpoint, the git-lfs
client can be used without any configuration.
/** Provide an LFS protocol implementation */
import org.eclipse.jgit.lfs.server.LargeFileRepository;
import org.eclipse.jgit.lfs.server.LfsProtocolServlet;
@Singleton
public class LfsApiServlet extends LfsProtocolServlet {
private static final long serialVersionUID = 1L;
private final S3LargeFileRepository repository;
@Inject
LfsApiServlet(S3LargeFileRepository repository) {
this.repository = repository;
}
@Override
protected LargeFileRepository getLargeFileRepository() {
return repository;
}
}
/** Register the LfsApiServlet to listen on the default LFS protocol endpoint */
import static com.google.gerrit.httpd.plugins.LfsPluginServlet.URL_REGEX;
import com.google.gerrit.httpd.plugins.HttpPluginModule;
public class HttpModule extends HttpPluginModule {
@Override
protected void configureServlets() {
serveRegex(URL_REGEX).with(LfsApiServlet.class);
}
}
/** Provide an implementation of the LargeFileRepository */
import org.eclipse.jgit.lfs.server.s3.S3Repository;
public class S3LargeFileRepository extends S3Repository {
...
}
Metrics
Metrics Reporting
To send Gerrit’s metrics data to an external reporting backend, a plugin
can get a MetricRegistry
injected and register an instance of a class
that implements the Reporter
interface from DropWizard
Metrics.
Metric reporting plugin implementations are provided for JMX, Elastic Search, and Graphite.
There is also a working example of reporting metrics to the console in the cookbook plugin.
Providing own metrics
Plugins may provide metrics to be dispatched to external reporting
services by getting a MetricMaker
injected and creating instances of
specific types of metric:
-
Counter
Metric whose value increments during the life of the process.
-
Timer
Metric recording time spent on an operation.
-
Histogram
Metric recording statistical distribution (rate) of values.
Note that metrics cannot be recorded from plugin init steps that are run during site initialization.
By default, plugin metrics are recorded under
plugins/${plugin-name}/${metric-name}
. This can be changed by setting
plugins.${plugin-name}.metricsPrefix
in the gerrit.config
file. For
example:
[plugin "my-plugin"]
metricsPrefix = my-metrics
will cause the metrics to be recorded under my-metrics/${metric-name}
.
See the replication metrics in the replication plugin for an example of usage.
AccountPatchReviewStore
The AccountPatchReviewStore is used to store reviewed flags on changes. A reviewed flag is a tuple of (patch set ID, file, account ID) and records whether the user has reviewed a file in a patch set. Each user can easily have thousands of reviewed flags and the number of reviewed flags is growing without bound. The store must be able handle this data volume efficiently.
Gerrit implements this extension point, but plugins may bind another implementation, e.g. one that supports multi-master.
DynamicItem.bind(binder(), AccountPatchReviewStore.class)
.to(MultiMasterAccountPatchReviewStore.class);
...
public class MultiMasterAccountPatchReviewStore
implements AccountPatchReviewStore {
...
}
Documentation
If a plugin does not register a filter or servlet to handle URLs
+/Documentation/*+
or +/static/*+
, the core Gerrit server will
automatically export these resources over HTTP from the plugin JAR.
Static resources under the static/
directory in the JAR will be
available as /plugins/helloworld/static/resource
. This prefix is
configurable by setting the Gerrit-HttpStaticPrefix
attribute.
Documentation files under the Documentation/
directory in the JAR will
be available as /plugins/helloworld/Documentation/resource
. This
prefix is configurable by setting the Gerrit-HttpDocumentationPrefix
attribute.
Documentation may be written in the Markdown flavor
pegdown if the file name ends
with .md
. Gerrit will automatically convert Markdown to HTML if
accessed with extension .html
.
Within the Markdown documentation files macros can be used that allow to write documentation with reasonably accurate examples that adjust automatically based on the installation.
The following macros are supported:
Macro | Replacement |
---|---|
@PLUGIN@ |
name of the plugin |
@URL@ |
Gerrit Web URL |
@SSH_HOST@ |
SSH Host |
@SSH_PORT@ |
SSH Port |
The macros will be replaced when the documentation files are rendered from Markdown to HTML.
Macros that start with \
such as \@KEEP@
will render as @KEEP@
even if there is an expansion for KEEP
in the future.
Automatic Index
If a plugin does not handle its /
URL itself, Gerrit will redirect
clients to the plugin’s /Documentation/index.html
. Requests for
/Documentation/
(bare directory) will also redirect to
/Documentation/index.html
.
If neither resource Documentation/index.html
or
Documentation/index.md
exists in the plugin JAR, Gerrit will
automatically generate an index page for the plugin’s documentation tree
by scanning every *.md
and *.html
file in the Documentation/
directory.
For any discovered Markdown (*.md
) file, Gerrit will parse the header
of the file and extract the first level one title. This title text will
be used as display text for a link to the HTML version of the page.
For any discovered HTML (*.html
) file, Gerrit will use the name of the
file, minus the *.html
extension, as the link text. Any hyphens in the
file name will be replaced with spaces.
If a discovered file is named about.md
or about.html
, its content
will be inserted in an About section at the top of the auto-generated
index page. If both about.md
and about.html
exist, only the first
discovered file will be used.
If a discovered file name beings with cmd-
it will be clustered into a
Commands section of the generated index page.
If a discovered file name beings with servlet-
it will be clustered
into a Servlets section of the generated index page.
If a discovered file name beings with rest-api-
it will be clustered
into a REST APIs section of the generated index page.
All other files are clustered under a Documentation section.
Some optional information from the manifest is extracted and displayed as part of the index page, if present in the manifest:
Field | Source Attribute |
---|---|
Name |
Implementation-Title |
Vendor |
Implementation-Vendor |
Version |
Implementation-Version |
URL |
Implementation-URL |
API Version |
Gerrit-ApiVersion |
Deployment
Compiled plugins and extensions can be deployed to a running Gerrit server using the plugin install command.
Web UI plugins distributed as a single ‘.js` file (or `.html’ file for Polygerrit) can be deployed without the overhead of JAR packaging. For more information refer to plugin install command.
Plugins can also be copied directly into the server’s directory at
$site_path/plugins/$name.(jar|js|html)
. For Web UI plugins, the name
of the file, minus the .js
or .html
extension, will be used as the
plugin name. For JAR plugins, the value of the Gerrit-PluginName
manifest attribute will be used, if provided, otherwise the name of the
file, minus the .jar
extension, will be used.
For Web UI plugins, the plugin version is derived from the filename. If
the filename contains one or more hyphens, the version is taken from the
portion following the last hyphen. For example if the plugin filename is
my-plugin-1.0.js
the version will be 1.0
. For JAR plugins, the
version is taken from the Version
attribute in the manifest.
Unless disabled, servers periodically scan the $site_path/plugins
directory for updated plugins. The time can be adjusted by
plugins.checkFrequency.
For disabling plugins the plugin remove command can be used.
Disabled plugins can be re-enabled using the plugin enable command.
Known issues and bugs
Error handling in UI when using the REST API
When a plugin invokes a REST endpoint in the UI, it provides an
AsyncCallback
to handle the result. At the moment the
onFailure(Throwable)
of the callback is never invoked, even if there
is an error. Errors are always handled by the Gerrit core UI which shows
the error dialog. This means currently plugins cannot do any error
handling and e.g. ignore expected errors.
In the following example the REST endpoint would return 404 Not Found if the user has no username and the Gerrit core UI would display an error dialog for this. However having no username is not an error and the plugin may like to handle this case.
new RestApi("accounts").id("self").view("username")
.get(new AsyncCallback<NativeString>() {
@Override
public void onSuccess(NativeString username) {
// TODO
}
@Override
public void onFailure(Throwable caught) {
// never invoked
}
});
Reviewer Suggestion Plugins
Gerrit provides an extension point that enables Plugins to rank the list of reviewer suggestion a user receives upon clicking “Add Reviewer” on the change screen. Gerrit supports both a default suggestion that appears when the user has not yet typed anything and a filtered suggestion that is shown as the user starts typing. Plugins receive a candidate list and can return a Set of suggested reviewers containing the Account.Id and a score for each reviewer. The candidate list is non-binding and plugins can choose to return reviewers not initially contained in the candidate list. Server administrators can configure the overall weight of each plugin using the weight config parameter on [addreviewer “<pluginName-exportName>”].
import com.google.gerrit.common.Nullable;
import com.google.gerrit.extensions.annotations.ExtensionPoint;
import com.google.gerrit.reviewdb.client.Account;
import com.google.gerrit.reviewdb.client.Change;
import com.google.gerrit.reviewdb.client.Project;
import java.util.Set;
public class MyPlugin implements ReviewerSuggestion {
public Set<SuggestedReviewer> suggestReviewers(Project.NameKey project,
@Nullable Change.Id changeId, @Nullable String query,
Set<Account.Id> candidates) {
Set<SuggestedReviewer> suggestions = new HashSet<>();
// Implement your ranking logic here
return suggestions;
}
}
Mail Filter Plugins
Gerrit provides an extension point that enables Plugins to discard incoming messages and prevent further processing by Gerrit.
This can be used to implement spam checks, signature validations or organization specific checks like IP filters.
import com.google.gerrit.extensions.annotations.ExtensionPoint;
import com.google.gerrit.server.mail.receive.MailMessage;
public class MyPlugin implements MailFilter {
boolean shouldProcessMessage(MailMessage message) {
// Implement your filter logic here
return true;
}
}
SEE ALSO
GERRIT
Part of Gerrit Code Review